ESR Studies of Unstable Six-coordinated Cobalt(II) Complexes Produced by γ -Radiolysis of Glassy Solutions at 77 K

Mikio Hoshino,* Shiro Konishi, Masao Nakajima, and Masashi Imamura

The Institute of Physical and Chemical Research, Wako, Saitama 351

(Received August 12, 1982)

Synopsis. ESR spectra of γ -irradiated glassy solutions of cobalt(II) chelates of N,N'-bis(1-methyl-3-oxobutylidene)-ethylenediamine (acacen) having two NH₃ in the axial positions at 77 K show the formation of a metastable cobalt(II) complex in which two NH₃ are forced to be confined in the axial positions.

Fundamental researches on intra- and intermolecular electron transfer mechanisms of metal complexes are of great importance in relation to understanding of the redox reactions occurring in biological systems.¹⁻⁴⁾ Numerous kinetics studies for the outer-sphere electron transfer between metal complexes have revealed that the complexes reorganize the ligand molecules with receiving or releasing electrons.⁵⁻⁷⁾

Recently, unstable complexes having an anion in the axial position were reported to be formed by the radiation-chemical reduction of the metal complexes in rigid solutions at 77 K.⁸⁻¹¹⁾ These complexes release the anions on warming the solution. In the present paper we wish to report the formation of an unstable six-coordinated complex, Co(II)(acacen)(NH₃)₂, having two neutral NH₃ molecules in the axial positions. The complex is considered to be an intermediate in the following reaction,

$$[Co(III)(acacen)(NH3)2]+ + e- \longrightarrow Co(II)(acacen) +2NH3,$$
(1)

where Co(II)(acacen) and Co(III)(acacen)(NH₃)₂ are represented, respectively, as

Experimental

[Co(III)(acacen)(NH₃)₂]⁺[X⁻] (X=Cl and Br) was prepared according to the method reported by Costa *et al.*¹²) Water was purified three times by distillation and ethylene glycol was used as supplied.

Radiolysis was performed with y-rays from 1.2 kCi ⁶⁰Co source at 77 K at a dose rate of 57000 rad min⁻¹. ESR spectra were measured on a JEOL JES-FE-3AX X-band spectrometer.

Results and Discussion

When a 1:1 mixture of ethylene glycol and water containing 10^{-3} M [Co(III)(acacen)(NH₃)₂]+[X⁻] was irradiated with γ -rays at room temperature, Co(II)-(acacen) was produced. As shown in reaction 1, this

result indicates that $[Co(III)(acacen)(NH_3)_2]^+$ is reduced with electrons ejected from solvent molecules (S) upon γ -irradiation

$$S \longrightarrow S^{+} + e. \tag{2}$$

The use of a mixture of ethylene glycol and water in radiolysis has been applied to the selective formation of one-electron reduced species of solutes.¹³⁾

The ESR spectrum a of Fig. 1 was observed for the γ-irradiated solution of [Co(III)(acacen)(NH₃)₂]+[Br-] at 77 K. Beside the intense signal from solvent radicals around 3250 gauss, four of the eight hyperfine lines due to the interaction of an unpaired electron and the cobalt nucleus (I=7/2) are clearly observed. spectrum dramatically changed to b of Fig. 1 after warming the irradiated solution to room temperature and recooling it to 77 K. Since an authentic Co(II)-(acacen) solution shows an ESR signal identical with b of Fig. 1, it is evident that the reduced species giving the spectrum a of Fig. 1 produces Co(II)(acacen) at higher temperatures. The most probable structure of the species is Co(II)(acacen)(NH₃)₂ in which two NH₃ molecules are forced to be confined in the axial positions owing to the solvent rigidity at 77 K. The γ -radiolysis of a [Co(III)(acacen)(NH₃)₂]+[Cl⁻] solution gives the same ESR spectrum as a of Fig. 1. This result indicates that the anions, Cl- and Br-, do not exert strong effect to the cobalt atom contrary to the case of constrained complexes.8-10) Presumably, the anions are located far from the cobalt atom.

For preparing the solution of $Co(II)(acacen)(NH_3)_2$ using the reaction

 $Co(II)(acacen) + 2NH^3 \longrightarrow Co(II)(acacen)(NH_3)_2$

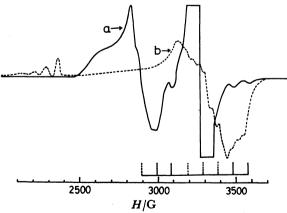


Fig. 1. ESR spectra of Co(II)(acacen) and Co(II)-(acacen)(NH₃)₂ in a 1:1 mixture of ethylene glycole and water at 77 K. a: ESR spectrum of Co(II)-(acacen)(NH₃)₂ obtained with γ-irradiating the solution of [Co(III)(acacen)(NH₃)₂]⁺[Br⁻] for 45 min at 77 K; b: ESR spectrum observed after warming the irradiated solution to room temperature and recooling it to 77 K.

Table 1. ESR parameters of Co(II)(acacen) and $Co(II)(acacen)(NH_3)_2$ in a 1:1 mixture of ethylene glycol and water at $77~{\rm K}$

	g_{x}^{a}	gy ^{a)}	gz	A _x ^{Co b)}	A _y ^{Co b)}	A _z ^{Co b)}
Co(II)(acacen)	3.157°)	1.930°)	2.006°)	110±5	36±2	36±2
$Co(II)(acacen)(NH_3)_2$	2.3—2.5 ^{d)}	$2.3-2.5^{d}$	2.023°)	d)	d)	90±4

a) x and y directions are arbitrary. b) Values are in units of 10⁻⁴ cm⁻¹. c) Experimental errors are 0.002. d) Values were not determined with precision because of poor resolution of the ESR spectrum.

Co(II)(acacen) was dissolved in ethanol saturated with NH₃ gass. However, the decomposition of Co(II)-(acacen) took place by dissolution and no formation of Co(II)(acacen)(NH₃)₂ was detected by ESR measurement. It is likely that the formation constant of Co(II)(acacen)(NH₃)₂ is very small.

In Table 1 are listed the ESR parameters of Co(II)-(acacen) and Co(II)(acacen)(NH₃)₂. The unpaired electron of Co(II)(acacen) has been established to be located in the d_{z^2} orbital of the cobalt atom.^{14–16)} The **g** tensors are related to the excited state energies, $\Delta E(d_{yz}\rightarrow d_{z^2})$ and $\Delta E(d_{xz}\rightarrow d_{z^2})$, by equations¹⁷⁾

$$g_{x} = 2.002 - 6 k_{x}^{2} \lambda / \Delta E(d_{yz} \rightarrow d_{z}^{2}), \qquad (i)$$

$$g_y = 2.002 - 6 k_y^2 \lambda / \Delta E(d_{xz} \rightarrow d_{z^2}),$$
 (ii)

$$g_z = 2.002,$$
 (iii)

where λ is the spin-orbit coupling constant and k_x and k_y , the orbital reduction parameters. The large in-plane g anisotropy $(g_x \approx 3)$ and $g_y \approx g_z \approx 2$ of Co(II)(acacen) has been interpreted by assuming that the d_{yz} lies closely below the d_{z^2} and d_{xz} , far below. 14)

In contrast to Co(II)(acacen), the ESR spectrum of $Co(II)(acacen)(NH_3)_2$ indicates a nearly axial symmetry about the cobalt atom. The d_{z^2} orbital probably interacts with the nonbonding orbitals of two NH_3 molecules in the axial positions. This interaction increases the d_{z^2} orbital energy, resulting in a substantial decrease in the in-plane g anisotropy as is predicted by equations i and ii. The reduction of out-of-plane puckering due to two NH_3 molecules would also has an effect on the decrease in the anisotropy as suggested in the case of Co(II)(acacen)(Py) (Py: pyridine). Strict theories, 18,19) however, should be applied for complete understanding of the ESR spectrum of $Co(II)(acacen)(NH_3)_2$.

The present study shows that the unstable six-coordinated cobalt(II) complex produced after one-electron reduction undergoes reorganization and ejection of ligand molecules in the axial positions. This

kind of unstable complexes should play an important role in the outer-sphere electron transfer of metal complexes as a reaction intermediate.

References

- 1) J. Rawling, S. Wherland, and H. B. Gray, J. Am. Chem. Soc., 98, 2177 (1976).
 - 2) C. Creutz and N. Sutin, J. Biol. Chem., 249, 6788 (1974).
- 3) D. Dolphin and R. H. Felton, Acc. Chem. Res., 7, 26 (1974).
 - 4) L. E. Bennet, Prog. Inorg. Chem., 18, 1 (1973).
 - 5) N. Sutin, Ann. Rev. Nucl. Sci., 12, 285 (1962).
- 6) M. Chou, C. Creutz, and N. Sutin, J. Am. Chem. Soc., 99, 5615 (1977).
 - 7) N. Sutin, J. Photochem., 10, 19 (1979).
- 8) S. Konishi, M. Hoshino, K. Yamamoto, and M. Imamura, Chem. Phys. Lett., 72, 459 (1980).
- 9) S. Konishi, M. Hoshino, and M. Imamura, J. Phys. Chem., 84, 3437 (1980).
- 10) M. Hoshino, S. Konishi, Y. Terai, and M. Imamura, Inorg. Chem., 21, 89 (1982).
- 11) S. Konishi, M. Hoshino, and M. Imamura, J. Phys, Chem., 86, 1412 (1982).
- 12) G. Costa, G. Mestroni, G. Tauzher, and L. Stefani, J. Organomet. Chem., 6, 181 (1966).
- 13) M. Nakamura and S. Fujiwara, J. Coord. Chem., 1, 221 (1971).
- 14) B. M. Hoffman, F. Bassolo, and D. L. Diemente, J. Am. Chem. Soc., 95, 6497 (1973).
- 15) F. L. Urbach, R. D. Bereman, J. A. Topich, M. Hariharan, and B. J. Kalbacher, *J. Am. Chem. Soc.*, **95**, 6497 (1973).
- 16) B. M. Hoffman, D. L. Diemente, and F. Bassolo, J. Am. Chem. Soc., **96**, 5063 (1974).
- 17) A. H. Maki, E. Edelstein, A. Davidson, and R. H. Holm, J. Am. Chem. Soc., **86**, 4580 (1964).
- 18) C. Busetto, F. Cariati, A. Fusi, M. Gulloti, F. Morazzoni A. Pasini, R. Ugo, and V. Valenti, *J. Chem. Soc.*, *Dalton Trans.*, 1973, 754.
- 19) B. R. McGarvy, Can. J. Chem., 53, 2498 (1975).